Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(1): e0011559, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166146

RESUMO

The parasite Leishmania donovani is one of the species causing visceral leishmaniasis in humans, a deadly infection claiming up to 40,000 lives each year. The current drugs for leishmaniasis treatment have severe drawbacks and there is an urgent need to find new anti-leishmanial compounds. However, the search for drug candidates is complicated by the intracellular lifestyle of Leishmania. Here, we investigate the use of human induced pluripotent stem cell (iPS)-derived macrophages (iMACs) as host cells for L. donovani. iMACs obtained through embryoid body differentiation were infected with L. donovani promastigotes, and high-content imaging techniques were used to optimize the iMACs seeding density and multiplicity of infection, allowing us to reach infection rates up to 70% five days after infection. IC50 values obtained for miltefosine and amphotericin B using the infected iMACs or mouse peritoneal macrophages as host cells were comparable and in agreement with the literature, showing the potential of iMACs as an infection model for drug screening.


Assuntos
Antiprotozoários , Células-Tronco Pluripotentes Induzidas , Leishmania donovani , Leishmaniose Visceral , Animais , Humanos , Camundongos , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Leishmaniose Visceral/parasitologia , Macrófagos/parasitologia
2.
Cytotherapy ; 25(1): 59-67, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319564

RESUMO

BACKGROUND: Engineered tissues and cell therapies based on human induced pluripotent stem cells (iPSCs) represent a promising approach for novel medicines. However, iPSC-derived cells and tissues may contain residual undifferentiated iPSCs that could lead to teratoma formation after implantation into patients. As a consequence, highly sensitive and specific methods for detecting residual undifferentiated iPSCs are indispensable for safety evaluations of iPSC-based therapies. The present study provides an approach for identifying potential marker genes for iPSC impurities in iPSC-derived cells using RNA sequencing data from iPSCs and various differentiated cell types. METHODS: Identifying iPSC marker genes for each cell type individually provided a larger and more specific set of potential marker genes than considering all cell types in the analysis. Thus, the authors focused on identifying markers for iPSC impurities in iPSC-derived cardiomyocytes (iCMs) and validated the selected genes by reverse transcription quantitative polymerase chain reaction. The sensitivity of the candidate genes was determined by spiking different amounts of iPSCs into iCMs and their performance was compared with the previously suggested marker lin-28 homolog A (LIN28A). RESULTS: Embryonic stem cell-related gene (ESRG), long intergenic non-protein coding RNA 678 (LINC00678), CaM kinase-like vesicle-associated (CAMKV), indoleamine 2,3-dioxygenase 1 (IDO1), chondromodulin (CNMD), LINE1-type transposase domain containing 1 (L1DT1), LIN28A, lymphocyte-specific protein tyrosine kinase (LCK), vertebrae development-associated (VRTN) and zinc finger and SCAN domain containing 10 (ZSCAN10) detected contaminant iPSCs among iCMs with a limit of detection that ranged from 0.001% to 0.1% depending on the gene and iCM batch used. CONCLUSIONS: Using the example of iCMs, the authors provide a strategy for identifying a set of highly specific and sensitive markers that can be used for quality assessment of iPSC-derived products.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/genética , Células-Tronco Embrionárias
3.
Sci Rep ; 8(1): 1799, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379065

RESUMO

We generated induced pluripotent stem cells (iPSCs) from patient fibroblasts to yield cell lines containing varying degrees of heteroplasmy for a m.13514 A > G mtDNA point mutation (2 lines) and for a ~6 kb single, large scale mtDNA deletion (3 lines). Long term culture of the iPSCs containing a single, large-scale mtDNA deletion showed consistent increase in mtDNA deletion levels with time. Higher levels of mtDNA heteroplasmy correlated with increased respiratory deficiency. To determine what changes occurred in deletion level during differentiation, teratomas comprising all three embryonic germ layers were generated from low (20%) and intermediate heteroplasmy (55%) mtDNA deletion clones. Regardless of whether iPSCs harbouring low or intermediate mtDNA heteroplasmy were used, the final levels of heteroplasmy in all teratoma germ layers increased to a similar high level (>60%). Thus, during human stem cell division, cells not only tolerate high mtDNA deletion loads but seem to preferentially replicate deleted mtDNA genomes. This has implications for the involvement of mtDNA deletions in both disease and ageing.


Assuntos
DNA Mitocondrial/genética , Deleção de Sequência/genética , Diferenciação Celular/genética , Linhagem Celular , Células Clonais/metabolismo , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/genética , Mutação Puntual/genética
4.
Stem Cell Reports ; 7(6): 1059-1071, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27840045

RESUMO

In fragile X syndrome (FXS), CGG repeat expansion greater than 200 triplets is believed to trigger FMR1 gene silencing and disease etiology. However, FXS siblings have been identified with more than 200 CGGs, termed unmethylated full mutation (UFM) carriers, without gene silencing and disease symptoms. Here, we show that hypomethylation of the FMR1 promoter is maintained in induced pluripotent stem cells (iPSCs) derived from two UFM individuals. However, a subset of iPSC clones with large CGG expansions carries silenced FMR1. Furthermore, we demonstrate de novo silencing upon expansion of the CGG repeat size. FMR1 does not undergo silencing during neuronal differentiation of UFM iPSCs, and expression of large unmethylated CGG repeats has phenotypic consequences resulting in neurodegenerative features. Our data suggest that UFM individuals do not lack the cell-intrinsic ability to silence FMR1 and that inter-individual variability in the CGG repeat size required for silencing exists in the FXS population.


Assuntos
Metilação de DNA/genética , Proteína do X Frágil de Retardo Mental/genética , Inativação Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Neurônios/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Diferenciação Celular/genética , Células Clonais , Epigênese Genética , Feminino , Síndrome do Cromossomo X Frágil/genética , Loci Gênicos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Linhagem
5.
Stem Cells ; 34(2): 299-310, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26577380

RESUMO

The multilineage differentiation capacity of mouse and human embryonic stem (ES) cells offers a testing platform for small molecules that mediate mammalian lineage determination and cellular specialization. Here we report the identification of two small molecules which drives mouse 129 ES cell differentiation to skeletal muscle with high efficiency without any genetic modification. Mouse embryoid bodies (EBs) were used to screen a library of 1,000 small molecules to identify compounds capable of inducing high levels of Pax3 mRNA. Stimulation of EBs with SMIs (skeletal muscle inducer, SMI1 and SMI2) from the screen resulted in a high percentage of intensively twitching skeletal muscle fibers 3 weeks after induction. Gene expression profiling studies that were carried out for mode of actions analysis showed that SMIs activated genes regulated by the Wnt pathway and inhibited expression of Smad2/3 and Sonic Hedgehog (Shh) target genes. A combination of three small molecules known to modulate these three pathways acted similarly to the SMIs found here, driving ES cells from 129 as well as Balb/c and C57Bl/6 to skeletal muscle. Taken together, these data demonstrate that the SMI drives ES cells to skeletal muscle via concerted activation of the Wnt pathway, and inhibition of Smad2/3 signaling and Shh pathways. This provides important developmental biological information about skeletal muscle differentiation from embryonic stem cells and may lead to the development of new therapeutics for muscle disease.


Assuntos
Diferenciação Celular , Proteínas Hedgehog/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Via de Sinalização Wnt , Animais , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Fibras Musculares de Contração Rápida/citologia
6.
PLoS One ; 9(4): e92836, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24747299

RESUMO

We have identified expression of the gene encoding the transcriptional coactivator FOG-1 (Friend of GATA-1; Zfpm1, Zinc finger protein multitype 1) in B lymphocytes. We found that FOG-1 expression is directly or indirectly dependent on the B cell-specific coactivator OBF-1 and that it is modulated during B cell development: expression is observed in early but not in late stages of B cell development. To directly test in vivo the role of FOG-1 in B lymphocytes, we developed a novel embryonic stem cell recombination system. For this, we combined homologous recombination with the FLP recombinase activity to rapidly generate embryonic stem cell lines carrying a Cre-inducible transgene at the Rosa26 locus. Using this system, we successfully generated transgenic mice where FOG-1 is conditionally overexpressed in mature B-cells or in the entire hematopoietic system. While overexpression of FOG-1 in B cells did not significantly affect B cell development or function, we found that enforced expression of FOG-1 throughout all hematopoietic lineages led to a reduction in the number of circulating eosinophils, confirming and extending to mammals the known function of FOG-1 in this lineage.


Assuntos
Linfócitos B/citologia , Eosinófilos/citologia , Hematopoese , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Linfócitos B/metabolismo , Contagem de Células Sanguíneas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Eosinófilos/metabolismo , Feminino , Expressão Gênica , Loci Gênicos/genética , Humanos , Masculino , Camundongos , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo
7.
Mol Cell Proteomics ; 11(8): 255-71, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22448045

RESUMO

Vertebrate nonmuscle cells express two actin isoforms: cytoplasmic ß- and γ-actin. Because of the presence and localized translation of ß-actin at the leading edge, this isoform is generally accepted to specifically generate protrusive forces for cell migration. Recent evidence also implicates ß-actin in gene regulation. Cell migration without ß-actin has remained unstudied until recently and it is unclear whether other actin isoforms can compensate for this cytoplasmic function and/or for its nuclear role. Primary mouse embryonic fibroblasts lacking ß-actin display compensatory expression of other actin isoforms. Consistent with this preservation of polymerization capacity, ß-actin knockout cells have unchanged lamellipodial protrusion rates despite a severe migration defect. To solve this paradox we applied quantitative proteomics revealing a broad genetic reprogramming of ß-actin knockout cells. This also explains why reintroducing ß-actin in knockout cells does not restore the affected cell migration. Pathway analysis suggested increased Rho-ROCK signaling, consistent with observed phenotypic changes. We therefore developed and tested a model explaining the phenotypes in ß-actin knockout cells based on increased Rho-ROCK signaling and increased TGFß production resulting in increased adhesion and contractility in the knockout cells. Inhibiting ROCK or myosin restores migration of ß-actin knockout cells indicating that other actins compensate for ß-actin in this process. Consequently, isoactins act redundantly in providing propulsive forces for cell migration, but ß-actin has a unique nuclear function, regulating expression on transcriptional and post-translational levels, thereby preventing myogenic differentiation.


Assuntos
Actinas/metabolismo , Movimento Celular/fisiologia , Fibroblastos/metabolismo , Proteômica/métodos , Actinas/genética , Amidas/farmacologia , Animais , Western Blotting , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Adesão Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pseudópodes/genética , Pseudópodes/metabolismo , Pseudópodes/fisiologia , Piridinas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
8.
PLoS One ; 7(1): e30011, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22253858

RESUMO

Generation of gain-of-function transgenic mice by targeting the Rosa26 locus has been established as an alternative to classical transgenic mice produced by pronuclear microinjection. However, targeting transgenes to the endogenous Rosa26 promoter results in moderate ubiquitous expression and is not suitable for high expression levels. Therefore, we now generated a modified Rosa26 (modRosa26) locus that combines efficient targeted transgenesis using recombinase-mediated cassette exchange (RMCE) by Flipase (Flp-RMCE) or Cre recombinase (Cre-RMCE) with transgene expression from exogenous promoters. We silenced the endogenous Rosa26 promoter and characterized several ubiquitous (pCAG, EF1α and CMV) and tissue-specific (VeCad, αSMA) promoters in the modRosa26 locus in vivo. We demonstrate that the ubiquitous pCAG promoter in the modRosa26 locus now offers high transgene expression. While tissue-specific promoters were all active in their cognate tissues they additionally led to rare ectopic expression. To achieve high expression levels in a tissue-specific manner, we therefore combined Flp-RMCE for rapid ES cell targeting, the pCAG promoter for high transgene levels and Cre/LoxP conditional transgene activation using well-characterized Cre lines. Using this approach we generated a Cre/LoxP-inducible reporter mouse line with high EGFP expression levels that enables cell tracing in live cells. A second reporter line expressing luciferase permits efficient monitoring of Cre activity in live animals. Thus, targeting the modRosa26 locus by RMCE minimizes the effort required to target ES cells and generates a tool for the use exogenous promoters in combination with single-copy transgenes for predictable expression in mice.


Assuntos
Loci Gênicos/genética , Integrases/metabolismo , Mutagênese Insercional/métodos , Regiões Promotoras Genéticas/genética , Proteínas/genética , Transgenes/genética , Animais , Sítios de Ligação Microbiológicos/genética , Células-Tronco Embrionárias/metabolismo , Genes Reporter/genética , Proteínas de Fluorescência Verde/metabolismo , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Especificidade de Órgãos/genética , RNA não Traduzido
9.
Genesis ; 40(3): 125-30, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15493018

RESUMO

GABA(B) receptors are the G-protein-coupled receptors for the neurotransmitter GABA. GABA(B) receptors are broadly expressed in the nervous system. Their complete absence in mice causes premature lethality or--when mice are viable--epilepsy, impaired memory, hyperalgesia, hypothermia, and hyperactivity. A spatially and temporally restricted loss of GABA(B) function would allow addressing how the absence of GABA(B) receptors leads to these diverse phenotypes. To permit a conditional gene inactivation, we flanked critical exons of the GABA(B(1)) gene with lox511 sites. GABA(B(1)) (lox511/lox511) mice exhibit normal levels of GABA(B(1)) protein, are fertile, and do not display any behavioral phenotype. We crossed GABA(B(1)) (lox511/lox511) with Cre-deleter mice to produce mice with an unrestricted GABA(B) receptor elimination. These GABA(B(1)) (-/-) mice no longer synthesize GABA(B(1)) protein and exhibit the expected behavioral abnormalities. The conditional GABA(B(1)) allele described here is therefore suitable for generating mice with a site- and time-specific loss of GABA(B) function.


Assuntos
Alelos , Inativação Gênica/fisiologia , Receptores de GABA-B/genética , Animais , Baclofeno/farmacologia , Comportamento Animal/efeitos dos fármacos , Regulação da Temperatura Corporal/efeitos dos fármacos , Cruzamentos Genéticos , Feminino , Agonistas GABAérgicos/farmacologia , Marcação de Genes , Hipotermia/induzido quimicamente , Integrases/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Insercional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...